تخمین شکل و عمق گنبدهای نمکی با استفاده از تفسیر دادههای گرانیسنجی به روش شبکههای عصبی مصنوعی چندلایه
نویسندگان
چکیده مقاله:
در ژئوفیزیک کاربردی برای نشاندادن توزیع اجرام زیرزمینی اغلب از اجسامی مانند کره، استوانة قائم، منشور قائم، استوانة افقی، گسل قائم، تاقدیس و ناودیس استفاده میشود. در این مقاله برای پیداکردن یک مدل محتملتر برای گنبد نمکی از شبکههای عصبی مصنوعی استفاده میشود. بدین منظور یک شبکة عصبی چندلایه با بیهنجاریهایی آموزش داده شد که از دو جسم با توزیعهای جرمی متفاوت به دست آمدهاند و بیهنجاریهای مشابهی تولید میکنند. این شبکة آموزشدیده قادر خواهد بود نوع جسمی که بیهنجاری معینی را تولید کرده است، تشخیص دهد. با استفاده از این تکنیک میتوان ابهام میان بیهنجاریهای مشابهی را که از توزیع جرمهای متفاوت تولید میشود، بدون استفاده از چگالی رفع کرد. هیچ روش تفسیری وجود ندارد که بدون اینکه برای شکل و تباین چگالی هدف فرضی در نظر بگیرد، مثلاً میان یک تاقدیس و یک ناودیس تمایز قائل شود. در اینجا نشان داده میشود که این کار را میتوان با استفاده از شبکههای عصبی مصنوعی برای تفسیر کیفی گرانی انجام داد. با استفاده از آموزش شبکههای عصبی مصنوعی چندلایه میتوان تفسیر کیفی و کمی گرانی انجام داد که در این مقاله آموزش شبکه بر اساس الگوریتم مرسوم پیشرو پسانتشار خطا انجام گرفته است. تفسیر کیفی به معنی رفع ابهام میان اجسامی است که بیهنجاری مشابهی تولید میکنند، ولی در تفسیر کمی با شبکههای عصبی چندلایه، پارامترهای مدل (عمق، شعاع، گسترش عمودی و ...) به دست میآیند. مدلهای کره و استوانة قائم بهترین مدلها برای نشاندادن گنبدهای نمکیاند؛ بنابراین از آنجا که از دادههای واقعی گنبد نمکی هومبل استفاده شد، از مدل کره و استوانة قائم استفاده کردیم. با استفاده از مدلهای کره و استوانة قائم، مجموعهای از مشخصههای (feature) مناسب تهیه و نرمالایز شده و به عنوان ورودی به شبکة عصبی به کار رفتند. از آنجا که قاعدة خاصی برای مشخصکردن تعداد نورونهای مناسب لایة پنهان وجود ندارد، با تغییر تعداد نورونهای لایة پنهان و مقایسة مجموع مربعات خطا (SSE) در هر حالت، بهترین تعداد نورونهای این لایه به دست آمد. پس از تشخیص تعداد مناسب نورونهای لایة پنهان شبکه، با دادههای مصنوعی بهدستآمده از مدلهای مصنوعی کره و استوانة قائم به آموزش شبکه پرداختیم و در نهایت با استفاده از خروجیهای شبکة مورد استفاده برای تشخیص شکل بیهنجاری و شبکة مورد استفاده برای تعیین پارامترهای بیهنجاری، شکل و پارامترهای گنبد نمکی هومبل را به دست آوردیم.
منابع مشابه
تخمین شکل و عمق گنبدهای نمکی با استفاده از تفسیر داده های گرانی سنجی به روش شبکه های عصبی مصنوعی چندلایه
در ژئوفیزیک کاربردی برای نشان دادن توزیع اجرام زیرزمینی اغلب از اجسامی مانند کره، استوانة قائم، منشور قائم، استوانة افقی، گسل قائم، تاقدیس و ناودیس استفاده می شود. در این مقاله برای پیداکردن یک مدل محتمل تر برای گنبد نمکی از شبکه های عصبی مصنوعی استفاده می شود. بدین منظور یک شبکة عصبی چندلایه با بی هنجاری هایی آموزش داده شد که از دو جسم با توزیع های جرمی متفاوت به دست آمده اند و بی هنجاری های م...
متن کاملتخمین عمق گنبدهای نمکی با استفاده از دادههای گرانی از طریق شبکۀ عصبی رگرسیون تعمیمیافته، مطالعۀ موردی: میدان مورس، دانمارک
در این مقاله تخمین عمق گنبدهای نمکی با استفاده از روش شبکۀ عصبی رگرسیون تعمیمیافتهGRNN، از طریق دادههای گرانیسنجی بررسی شده است. بدین منظور یک شبکۀ عصبی GRNN به وسیلۀ دادههای گرانی که از روش پیشرو، مدل گنبد نمکی را به دست میآورد، به ازای اعماق مختلف بهدستآمده آموزش داده شد و با محاسبۀ خطای شبکه، شبکه مرتب اصلاح شد تا معماری شبکه با خطای پذیرفتنی به دست آید. سپس بهمنظور تست شبکه از داده...
متن کاملتخمین هوشمند حداکثر عمق آبشستگی اطراف آبشکنهای L شکل با استفاده از شبکههای عصبی مصنوعی و سیستم استنتاج فازی- عصبی
از جمله مسایل مهم در طراحی آبشکنها، پدیده آبشستگی موضعی دماغه آنها میباشد که بهعلت تنگشدگی مقطع جریان و وجود گردابههای قوی بهوجود میآید و یکی از شاخصهای مهم در تعیین مشخصات حفرهی آبشستگی، حداکثرعمق آبشستگی میباشد. امروزه شبکههای عصبی کاربردهای بسیاری در مسایل مختلف مهندسی آب که رابطه و الگوی مشخصی بین عوامل مؤثر بر وقوع یک پدیده وجود ندارد، پیدا کرده است. بنابراین در این پژوهش از...
متن کاملتخمین هدایت هیدرولیکی اشباع در برخی از خاکهای استان ایلام با استفاده از شبکههای عصبی مصنوعی و روشهای رگرسیونی
هدایت هیدرولیکی اشباع ) Ks ( یکی از ورودیهای مهم در مدلسازی جریان آب و انتقال آلایندهها در خاک، طراحی سیستمهای آبیاری و زهکشی، مدلسازی آبهایزیرزمینی و فرایندهای زیستمحیطی است. اندازهگیری مستقیم Ks در مزرعه و آزمایشگاه میسّر میباشد؛ لیکن، معمولاً زمانبر، پرهزینه و دشوار بوده و در سطوحبزرگ نیز غیرعملی است. افزون بر این، بهدلیل غیرهمگن بودن خاک و خطاهای آزمایشگاهی، تا حدودی این اندازهگیریها غیرقابل ...
متن کاملتخمین عمق گنبدهای نمکی با استفاده از داده های گرانی از طریق شبکۀ عصبی رگرسیون تعمیم یافته، مطالعۀ موردی: میدان مورس، دانمارک
در این مقاله تخمین عمق گنبدهای نمکی با استفاده از روش شبکۀ عصبی رگرسیون تعمیم یافتهgrnn، از طریق داده های گرانی سنجی بررسی شده است. بدین منظور یک شبکۀ عصبی grnn به وسیلۀ داده های گرانی که از روش پیشرو، مدل گنبد نمکی را به دست می آورد، به ازای اعماق مختلف به دست آمده آموزش داده شد و با محاسبۀ خطای شبکه، شبکه مرتب اصلاح شد تا معماری شبکه با خطای پذیرفتنی به دست آید. سپس به منظور تست شبکه از داده ...
متن کاملمقایسه تأثیر وضعیت طاق باز و دمر بر وضعیت تنفسی نوزادان نارس مبتلا به سندرم دیسترس تنفسی حاد تحت درمان با پروتکل Insure
کچ ی هد پ ی ش مز ی هن ه و فد : ساسا د مردنس رد نامرد ي سفنت سرتس ي ظنت نادازون داح ي سکا لدابت م ي و نژ د ي سکا ي د هدوب نبرک تسا طسوت هک کبس اـه ي ناـمرد ي فلتخم ي هلمجزا لکتورپ INSURE ماجنا م ي دوش ا اذل . ي هعلاطم ن فدهاب اقم ي هس عضو ي ت اه ي ندب ي عضو رب رمد و زاب قاط ي سفنت ت ي هـب لاتـبم سراـن نادازون ردنس د م ي سفنت سرتس ي لکتورپ اب نامرد تحت داح INSURE ماجنا درگ ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 41 شماره 3
صفحات 439- 452
تاریخ انتشار 2015-09-23
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023